Development of a high-throughput screen for inhibitors of replication protein A and its role in nucleotide excision repair.

نویسندگان

  • Brooke J Andrews
  • John J Turchi
چکیده

The heterotrimeric protein, replication protein A (RPA), is essential for DNA repair and replication. RPA is a viable target in the treatment of cancer as many chemotherapeutic agents act by blocking DNA replication. Furthermore, inhibition of RPA could prove useful in treating cancers that have acquired resistance to DNA damaging agents through enhanced DNA repair mechanisms as has been observed with certain platinum-resistant carcinomas. In an effort to identify inhibitors of RPA, we employed a novel fluorescent reporter and established a homogeneous high-throughput screening assay to measure RPA's DNA binding activity. Using this assay, we have screened a collection of small molecules and determined the effect they have on the RPA-DNA interaction. Of the 2000 compounds screened, 79 scored positive for inhibition of RPA binding activity. Secondary screenings were performed using an electrophoretic mobility shift assay; of the 79 compounds, 9 scored positive and were further characterized in titration experiments to determine the most potent inhibitor, resulting in several compounds showing an IC50 in the low micromolar range. Fluorescence polarization analyses were also performed to determine the mechanism of inhibition for each compound. Validation of the inhibitory activity of selected compounds was verified using in vitro nucleotide excision repair (NER) catalyzed excision of a single cisplatin lesion in a duplex DNA. The identification and use of RPA inhibitors may aid in inhibiting NER activity that could potentially circumvent resistance to certain chemotherapeutic agents as well as be useful in the characterization of RPA and its interaction with DNA.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Association of -77T>C and Arg194trp polymorphisms of XRCC1 with risk of coronary artery diseases in Iranian population

Objective(s): Coronary artery disease (CAD) is the leading cause of death in both male and female worldwide. The main cause of CAD is the atherosclerosis of coronary arteries, which is, mostly caused by genetic alteration. 50% of such cases occur in mitotic cells where single-strand breaks occur spontaneously or due to ionizing radiation. X-ray repair cross-complementing protein 1 (XRCC1) as a ...

متن کامل

Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair.

Nucleotide excision repair (NER) in yeast is effected by the concerted action of a large complex of proteins. Recently, we identified a stable subcomplex containing the yeast Rad7 and Rad16 proteins. Here, we report the identification of autonomously replicating sequence binding factor 1 (ABF1) as a component of the Rad7/Rad16 NER subcomplex. Yeast ABF1 protein is encoded by an essential gene r...

متن کامل

Identification of a Chemical That Inhibits the Mycobacterial UvrABC Complex in Nucleotide Excision Repair†

Bacterial DNA can be damaged by reactive nitrogen and oxygen intermediates (RNI and ROI) generated by host immunity, as well as by antibiotics that trigger bacterial production of ROI. Thus a pathogen's ability to repair its DNA may be important for persistent infection. A prominent role for nucleotide excision repair (NER) in disease caused by Mycobacterium tuberculosis (Mtb) was suggested by ...

متن کامل

Reversible protein phosphorylation modulates nucleotide excision repair of damaged DNA by human cell extracts.

Nucleotide excision repair of DNA in mammalian cells uses more than 20 polypeptides to remove DNA lesions caused by UV light and other mutagens. To investigate whether reversible protein phosphorylation can significantly modulate this repair mechanism we studied the effect of specific inhibitors of Ser/Thr protein phosphatases. The ability of HeLa cell extracts to carry out nucleotide excision ...

متن کامل

Diverse Small Molecule Inhibitors of Human Apurinic/Apyrimidinic Endonuclease APE1 Identified from a Screen of a Large Public Collection

The major human apurinic/apyrimidinic endonuclease APE1 plays a pivotal role in the repair of base damage via participation in the DNA base excision repair (BER) pathway. Increased activity of APE1, often observed in tumor cells, is thought to contribute to resistance to various anticancer drugs, whereas down-regulation of APE1 sensitizes cells to DNA damaging agents. Thus, inhibiting APE1 repa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cancer therapeutics

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 2004